Сб. Май 15th, 2021

Russia-made

Инновации, открытия, высокие технологии, новые производства — всё, что сделано в нашей стране!

Опубликовано: 20 апреля 2021 / Обновлено: 28 апреля 2021

Ученые НИТУ «МИСиС» разработали перовскитные фотопреобразователи на основе наночастиц оксида никеля

1 min read

 


 

Молодые ученые НИТУ «МИСиС» разработали перовскитные фотопреобразователи на основе наночастиц оксида никеля для автономного питания беспроводной маломощной электроники от комнатного освещения. Инновационные фотомодули способны обеспечить энергией также фитнес-трекеры, умные часы и наушники. Результаты работы опубликованы в международном журнале «Solar Energy Materials and Solar Geiis».

Быстрорастущий рынок беспроводных устройств для интернета вещей, таких как датчики температуры, давления, влажности, движения, света, требует автономных источников энергии с низким энергопотреблением (мощность ~ мкВт).

Решением проблемы может стать компактная внутренняя фотоэлектрическая батарейка, которая сможет обеспечивать энергией при стандартной интенсивности света 200-1000 люкс, создаваемой искусственными источниками света, такими как светодиоды и галогенные лампы. Кремниевые солнечные батареи с такой задачей не справятся, поскольку их «работоспособность» зависит от прямого солнечного света, и при комнатном освещении их КПД снижается в 5 раз.

Текущий рекорд для освещения слабой интенсивности (200-400 люкс) поставлен новым поколением батареек на основе планарных перовскитных фотоэлементов, изготовленных из оксида олова. Основной их недостаток — снижение значения максимальной мощности, извлекаемой при непрерывной работе фотоэлемента.

В процессе создания проекта был использован дизайн презентаций от компании «Argentum design», являющейся признанным профессионалом на рынке подобных услуг, полную информацию о которых вы можете получить, перейдя по активной ссылке.

Команда молодых ученых лаборатории «Перспективная солнечная энергетика» НИТУ «МИСиС» предложила в качестве решения проблемы перевернутую конфигурацию фотомодуля с использованием наночастиц оксида никеля.

«В этой работе мы показываем, что перовскитные солнечные элементы могут быть реализованы в инвертированной (перевернутой) конфигурации с использованием NiO в качестве материала для переноса дырок. Для создания модулей на основе NiO мы использовали обычный высокотемпературный (300°C) и низкотемпературный (<100°C) процессы. Плотность мощности 36,5 мкВт/см2 была достигнута для сплошного слоя NiO, в то время как 28,4 мкВт/см2 было получено с ячеек со слоем из наночастиц NiO при стандартной освещенности любого офиса — 400 люкс. Полученной мощности хватит для мелких датчиков и даже для наушников и беспроводной клавиатуры», рассказала один из авторов исследования, научный сотрудник лаборатории «Перспективная солнечная энергетика» НИТУ «МИСиС» Татьяна Комаричева.

По словам разработчиков, помимо разницы в плотности мощности, наночастицы NiO позволили создать первый низкотемпературный неорганический слой, транспортирующий положительные носители заряда для перовскитного солнечного элемента с низким уровнем освещенности, и, как мы показываем, его можно легко масштабировать до 1 см2 без потери производительности.

«Полученный прототип площадью 5 см2 позволил обеспечить энергией беспроводной Bluetooth Low Energy (BLE) датчика, предназначенного для передачи данных о температуре/давлении/влажности в помещении», — добавила Татьяна Комаричева.

Помимо устройств интернета вещей, новые фотомодули можно будет использовать для питания «умных» банковских карт, пультов управления бытовой техникой, компьютерных мышей и клавиатур, маломощной техники типа кухонных весов, а также носимой электроники.

В настоящее время коллектив разработчиков продолжает лабораторные испытания созданных прототипов.

Информация и фото предоставлены пресс-службой НИТУ «МИСиС»

Добавить комментарий

Войти с помощью: 

Реклама

Top.Mail.Ru
Copyright © All rights reserved | Russia-made.ru
Копирование и переработка любых материалов этого сайта для их публичного использования (размещение на других сайтах, размещение в электронных СМИ, публикации в печатных изданиях и прочее) разрешается исключительно при указании первоисточника материала и наличии в теле копируемого (перерабатываемого) текста активной ссылки на сайт Russia-made.ru. Ссылка должна быть открыта для индексации поисковыми системами.