Пт. Янв 22nd, 2021

Russia-made

Инновации, открытия, высокие технологии, новые производства — всё, что сделано в нашей стране!

Опубликовано: 29 декабря 2020

Физики из МФТИ и ФИАН предложили новую конструкцию оптических антенн для нанофотонных устройств

1 min read

Физики из МФТИ и Физического института им. П. Н. Лебедева РАН предложили новую конструкцию оптических антенн для нанофотонных устройств — на основе серебряных наночастиц и кадмиевых квантовых точек, которые испускают более яркое люминесцентное излучение и при этом обладают меньшим временем реакции. Кроме того, ученые предложили новый способ получения микроизображений антенн, позволяющий обойтись без использования метода «темного поля». Работа опубликована в журнале Nanotechnology.

Современная электроника основана на использовании электронов в качестве носителей информации, однако классические медные провода и дорожки на чипах уже не могут передавать информацию с достаточной для современных процессоров скоростью. Переход от электронов к фотонам может решить эту проблему. Нанофотонные устройства представляют интерес для применения в области цифровых технологий — в крупных дата-центрах, для мобильных сенсорных устройств, а также для аналоговых оптических сопроцессоров. Ключевой компонент таких устройств — наноантенна, способная принимать излучение определенной длины волны и преобразовывать его — менять частоту, амплитуду или направление.

В 1985 году Джон Вессель показал, что в качестве наноантенны можно использовать металлическую наночастицу. Дальнейшее развитие технологии привело к созданию нанопатч-антенн. Название «патч» происходит от английского «заплатка» — металлические наночастицы располагаются на металле, покрытом слоем диэлектрика, как заплатки на ткани (рисунок 1).


 © mipt.ru

Рисунок 1. (а, с) схематическое устройство нанопатч-антенны. На стекло нанесен слой металла — алюминия, который, окисляясь, покрывается пленкой Al2O3, являющегося диэлектриком. Далее нанесен слой квантовых точек — небольших кристаллов сульфида или селенида кадмия, способных под воздействием электромагнитного излучения испускать свет определенной длины волны. Выше расположены кубические наночастицы серебра размером 80 нм. Источник: Nanotechnology

Под действием внешнего электромагнитного поля электроны в наночастице смещаются, образуя на краю частицы отрицательный заряд, противоположный край при этом приобретает положительный заряд, частица поляризуется.


 © mipt.ru

Рисунок 2. Возбуждение локального поверхностного плазмонного резонанса электрическим полем (А) и распределение интенсивности поля вокруг наночастицы с возбужденным плазмоном (Б). Источник: «Успехи биологической химии», т. 55, 2015, с. 391-420, «Детекция межмолекулярных взаимодействий, основанная на регистрации поверхностного плазмонного резонанса», Д. В. Сотников, А. В. Жердев, Б. Б. Дзантиев

При этом возникает электромагнитное поле, направленное противоположно внешнему, которое колеблется в такт с падающей на частицу электромагнитной волной. Эти колебания физики описывают с помощью специальной квазичастицы — плазмона. Если частота волны не превышает определенного значения, внутреннее поле «экранирует» наночастицу от внешнего, падающая волна отражается — отсюда и характерный блеск, которым обладают металлы. Если же частота выше, электроны «не успеют» среагировать — волна поглотится или рассеется. Как и в любых колебаниях, у нас есть частота вынуждающего излучения, при которой амплитуда максимальна, — частота плазмонного резонанса.

«В результате колеблющиеся электроны в зазоре между металлической наночастицей и слоем металла создают мощное электрическое поле, намного превосходящее внешнее. Находящиеся в этом поле квантовые точки более эффективно поглощают внешнее излучение и, следовательно, более эффективно излучают. Уменьшение времени, за которое происходит излучение квантовой точки, происходит за счет открытого в 1964 году эффекта Парсела: поместив квантовую точку в резонатор из металлического слоя и наночастицы, мы можем заставить ее излучать быстрее», — поясняет Алексей Витухновский, профессор, заведующий лабораторией технологий 3D-печати функциональных микроструктур МФТИ.

Физики из лаборатории технологий 3D-печати функциональных микроструктур МФТИ с коллегами разработали конструкцию нанопатч-антенны, которая позволила сократить паузу между облучением и люминесцентным ответом в 60 раз (с 12 наносекунд до 0,2) и увеличить интенсивность излучения в 330 раз.

Кроме того, ученые предложили новый способ оптического исследования структуры нанопатч-антенн, основанный на перестройке длины волны лазерного излучения. Традиционный подход подразумевает использование метода «темного поля», когда образец подсвечивается «сбоку», так что изображение формируется рассеянным на нем светом. Основной минус темнопольной микроскопии — подсветка в широком спектральном диапазоне, при этом фокусное расстояние для разных длин волн будет разным, а изображение будет получаться размытым. Кроме того, если в основном наблюдение объекта ведется в светлом поле, перестраиваться в темное поле долго и неудобно.


 © mipt.ru

Рисунок 3. Предложенная учеными схема микроскопии в свете слегка рассеянного лазерного излучения. Источник: Nanotechnology


 © mipt.ru

Рисунок 4. а) изображение серебряных наночастиц на стекле, полученное методом темного поля b) и при помощи предложенного метода, c) — изображение серебряных наночастиц на металле, полученное при освещении образца лазерным излучением с длиной волны 530 нм d) и 650 нм. Источник: Nanotechnology

Предложенный авторами метод лишен этих недостатков — он основан на том, что наночастица на металле поглощает падающее излучение с частотой, близкой к частоте плазмонного резонанса, поэтому на изображении частица будет выглядеть темным пятном. Длина волны, при которой происходит плазмонный резонанс, в серебряной наночастице на алюминии около 700 нм, поэтому при длине волны лазера в 650 нм картинка получается более четкой.

«Наноантенны — один из элементов, необходимых для создания квантовых компьютеров. Квантовые компьютеры используют источники одиночных фотонов, работающие на больших скоростях, и нанопатч-антенны могут выступать в роли такого источника. Кроме того, они могут быть использованы в органических светодиодах, из которых, в свою очередь, можно собрать световую поверхность или экран», — комментирует Станислав Елисеев, старший научный сотрудник лаборатории технологий 3D-печати функциональных микроструктур МФТИ.

Исследование поддержано Российским фондом фундаментальных исследований.

https://sdelanounas.ru/blogs/138477/

Добавить комментарий

Войти с помощью: 

Реклама

Top.Mail.Ru
Copyright © All rights reserved | Russia-made.ru
Копирование и переработка любых материалов этого сайта для их публичного использования (размещение на других сайтах, размещение в электронных СМИ, публикации в печатных изданиях и прочее) разрешается исключительно при указании первоисточника материала и наличии в теле копируемого (перерабатываемого) текста активной ссылки на сайт Russia-made.ru. Ссылка должна быть открыта для индексации поисковыми системами.